7 research outputs found

    Motor sequence learning in children with recovered and persistent developmental stuttering: preliminary findings

    Get PDF
    PURPOSE: Previous studies have associated developmental stuttering with difficulty learning new motor skills. We investigated non-speech motor sequence learning in children with persistent developmental stuttering (CWS), children who have recovered from developmental stuttering (CRS) and typically developing controls (CON). METHODS: Over the course of two days, participants completed the Multi-Finger Sequencing Task, consisting of repeated trials of a10-element sequence, interspersed with trials of random sequences of the same length. We evaluated motor sequence learning using accuracy and response synchrony, a timing measure for evaluation of sequencing timing. We examined error types as well as recognition and recall of the repeated sequences. RESULTS: CWS demonstrated lower performance accuracy than CON and CRS on the first day of the finger tapping experiment but improved to the performance level of CON and CRS on the second day. Response synchrony showed no overall difference among CWS, CRS and CON. Learning scores of repeated sequences did not differ from learning scores of random sequences in CWS, CRS and CON. CON and CRS demonstrated an adaptive strategy to response errors, whereas CWS maintained a high percentage of corrected errors for both days. CONCLUSIONS: Our study examined non-speech sequence learning across CWS, CRS and CON. Our preliminary findings support the idea that developmental stuttering is not associated with sequence learning per se but rather with general fine motor performance difficulties

    Ontogenetic changes in alarm-call production and usage in meerkats (Suricata suricatta): adaptations or constraints?

    Full text link
    In many species, individuals suffer major mortality in their first year because of predation. Behaviours that facilitate successful escape are therefore under strong selection, but anti-predator skills often emerge gradually during an individual’s early development. Using long-term data and acoustic recordings of alarm calls collected during natural predator encounters, we aimed to elucidate two largely unsolved issues in anti-predator ontogeny: (i) whether incorrect predator assignment is adaptively age-appropriate, given that vulnerability often change during development, or whether age-related differences reflect true mistakes made by immature individuals; and (ii) the extent to which the development of adult-like competence in alarm-call production and usage is simply a function of maturational processes or dependent upon experience. We found that young meerkats (Suricata suricatta) were less likely to give alarm calls than were adults, but alarmed more in response t o non-threatening species compared to adults. However, stimuli that pose a greater threat to young than adults did not elicit more calling from young; this argues against age-related changes in vulnerability as the sole explanation for developmental changes in calling. Young in small groups, who were more likely to watch out for predators, alarmed more than less vigilant young in larger groups. Moreover, despite similarities in acoustic structure between alarm call types, calls appeared in the repertoire at different rates and those that were associated with frequently encountered predators were produced relatively early on. These results indicate that experience is a more plausible explanation for such developmental trajectories than is maturation
    corecore